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Outline of this course

• Introduction to LHC, its experiments, physics   programme and 
experimental challenges?

• ATLAS detector, requirements and expected physics performance
• The SM precision measurements : mW, mt, couplings

• The SM and MSSM Higgs 
•  Supersymmetry
•  Extra dimensions and exotics 
•  B-physics 
•  Heavy ion physics

http://th-www.if.uj.edu.pl/~erichter/dydaktyka/Dydaktyka2011/LHCPhysics-2011http://th-www.if.uj.edu.pl/~erichter/dydaktyka/Dydaktyka2011/LHCPhysics-2011

Many thanks to colleagues from LHC collaborations for making available large 
parts of material shown here. 
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Outline of this lecture

What is CERN and brief history toward the LHC?
What is the LHC ?
Why the LHC ?
The general purpose experiments:  ATLAS and CMS
Brief overview of  the physics programme
Experimental challenges
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LHC at CERN laboratory

CERN: the world’s largest particle physics laboratory 
• international organisation created in  1953/1954, initial  membership: 12 countries
• Poland is a member starting from  year 1991
• About 10 000 active physicists, computing scientists, engineers

situated between 
Jura mountains and Geneva
(France/Swiss)  

http://public.web.cern.ch
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Started operating in 2008
After few days accident
Restarted in fall 2009.

Machine at present works 
fantastically well 
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LHC
 

2009 – 2012 :  
sqrt(s) = 7-8 TeV, L ~ 1033-1034 cm-2 s-1   ,  ∫  Ldt ≈  10-15 fb-1   

2014 - 2017 :  
       sqrt(s) = 13-14 TeV, L ~ 1*1034 cm-2 s-1    ,   ∫  Ldt ≈  50 fb-1 

2019-2021
       sqrt(s) = 13-14 TeV,  L ~ 2*1034 cm-2 s-1  ,   ∫  Ldt ≈  300 fb-1

       2023-20XX
       sqrt(s) = 13-14 TeV,  L ~ 5*1034 cm-2 s-1  ,   ∫  Ldt ≈  3000 fb-1  
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Experiments

Four (five) large-scale experiments:

ATLAS

CMS 

general-purpose pp
experiments

LHCb             pp experiment dedicated
                            to b-quark physics and CP violation

ALICE             heavy-ion experiment (Pb-Pb collisions)
                           at 5.5 TeV/nucleon → √s ≅ 1000 TeV

                           Quark-gluon plasma studies.                        

Cracow  IFJ-PAN
 -> ATLAS, ALICE, LHCb

TOTEM            Total Cross-Section, Elastic Scattering and Diffraction Dissociation 
(in CMS cavern)                                                         
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LHC is an unprecedented machine

•Energy
  
•Luminosity 

• Cost   :  > 4000 MCHF  (machine + experiments)

• Size/complexity of experiments : 
   ~ 1.3-2 times bigger than previews collider experiments
   ~ 10 times more complex

• Human resources : > 4000 physicists in the 
                                          experiments

WHY  ? 
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Pixel Layer-2 – half shell

Pixel Layer2, once clamped, inside

Lot of progress on the
Pixels!

Pixel ECs at CERN



24Prof. dr hab. Elżbieta Richter-Wąs

One more view of the first installed TGC Big Wheel
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???
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Standard Model

Higgs
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Extension of the Standard Model??

No Higgs??

Other 
bosons??

Other families 
of particles??

Supersymmetric 
partners ?? 

Substructure??
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How we look for new particles?

We know well
“standard” particles 
and their interaction 
with detectors
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Motivations for LHC

Motivation 1 : Origin of particle masses

Standard Model of electroweak interactions
verified with precision 10-3 - 10-4  by 
measurements at LEP at  √s ≥ mZ 
and at the Tevatron at  √s = 1.8 TeV
                                  
              discovery of top quark in ‘94,
              mtop ≅ 174 GeV 

However: origin of particle masses not known. 
Ex. :mγ = 0

                  mW, Z  ≈ 100 GeV
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Motivation for LHC

SM : Higgs mechanism gives mass to particles
         (Electroweak Symmetry Breaking)

f

f

H

~ mf

mH < 1 TeV from theory 

However: 
-- Higgs not found yet: only missing (and essential)  piece of  SM
-- present limit : mH > 114.4 GeV (from LEP)
-- Tevatron may go beyond (depending on luminosity)
    ⇒   need a machine to discover/exclude

           Higgs from ≈ 115 GeV to 1 TeV                              
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Motivation for LHC

Motivation 2  :  Is  SM  the “ultimate theory” ?

• Higgs mechanism is the weakest part of the SM:
   -- “ad hoc” mechanism
   --  due to radiative corrections 

                                                  
                                                 
         

         ∆mH
2 ~ Λ2

     ⇒  radiative corrections can be very large (“unnatural”)
           and Higgs mass can diverge unless “fine-tuned”
           cancellations → “ bad behaviour ” of the theory 

H H Λ : energy scale up to which SM
      is valid (can be very large).
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Motivation for LHC

Motivation 2  :  Is  SM  the “ultimate theory” ?
 
•Hints that  forces  could unify at high energy
             

αEM ≡ α1 ≈ 1/128 ≈ 0.008  

αWEAK ≡α2 ≈ 0.03

αS ≡α3 ≈ 0.12

√s = 100 GeV 

•  E-dependence of coupling constants proven experimentally

•  Grand Unified Theories: EM/Weak/Strong forces unify at 
    E ~ 1016 → beyond physics become simple (one force with strength αG )
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Motivation for LHC

• SM is probably low-energy approximation of
  a more general theory 
 
• Need a high-energy machine to look for 
   manifestations of this theory

• e.g. Supersymmetry     :     mSUSY ~ TeV
  Many other theories predict New Physics at the TeV scale
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Motivation for LHC

Motivation 3  : Many other open questions

• Are quarks and leptons really elementary ? 

•  Why 3 fermion families ? 

•  Are there additional families of (heavy) quarks and  leptons ?

•  Are there additional gauge bosons ? 

•  What is the origin of matter-antimatter asymmetry in the  universe ? 

•  Can quarks and gluons be deconfined in a quark-gluon  plasma as in early 
stage of universe ? 

•  ….  etc.   …...  
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Motivation for LHC

Motivation 4 : The  most fascinating one …

Unexpected physics     ? 

Motivation 5 : Precise measurements
Two ways to find new physics: 

       -- discover new particles/phenomena
             -- measure properties of known particles
                 as precisely as possible ⇒ find deviations
                 from SM 
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Motivation for LHC

LHC: known particles (W, Z, b, top, …)
produced with enormous rates thanks to
high energy (→ high σ) and L (→  high rate)

Ex. :     1 year at low luminosity
               5 10 8    W →  lν 
               5 10 7    Z  →  ll               
               107        tt     pairs
               1012       bb   pairs
    
            
→ many precision measurements possible 
     thanks to large statistics 
    (stat. error ~  1/√  N)

Note : measurements of  Z parameters 
performed 
          at  LEP and SLD, however 
precision can be improved  for :
-- W physics
-- Triple Gauge Couplings  WWγ, WWZ
-- b-quark physics 
-- top-quark physics 
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Phenomenology of pp collisions

p

θ pT

Transverse momentum 
(in the plane perpendicular to the beam) : 
   

                                   pT = p sinθ
                    

Rapidity: ) (tg log-  2
θη=

θ = 90o    →  η = 0
θ = 10o    →  η ≅ 2.4
θ = 170o  →  η ≅ -2.4

Total inelastic cross-section:  

      σtot (pp) = 70 mb        √s = 14 TeV 

Rate =
n. 
events

1034 cm-2 s-1

= L x σtot (pp) = 109 interactions/s
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Phenomenology of pp collisions

Most interactions due to collisions at large distance between incoming protons 
where protons interact as “ a whole ” → small momentum transfer (∆p ≈ 1 
/∆x ) → particles in final state have large longitudinal momentum but small 
transverse momentum (scattering at large angle is small) 

Class 1:

< pT > ≈ 500 MeV      of charged particles in final state 7  ≈ηd
dN

charged particles uniformly distributed in  φ

Most energy escapes down the beam pipe.

These are called minimum-bias events (“ soft “ events).
They are the large majority but are not very interesting. 



46Prof. dr hab. Elżbieta Richter-Wąs

Phenomenology of pp collisions

Class 2:

Monochromatic proton beam can be seen as beam of quarks and gluons with a wide band

of energy.  Occasionally hard scattering (“ head on”) between constituents of incoming protons 
occurs. 

ŝx1p x2p

p ≡ momentum of incoming protons = 7 TeV

Interactions at small distance → large momentum transfer → massive particles and/or 
particles at  large angle are produced. 

These are interesting physics events but they are rare.
u

W+

d

Ex.         u +    → W+

σ (pp → W) ≈ 150 nb ≈ 10-6 σtot (pp) 

d
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Unlike at e+e- colliders 

•  effective centre-of-mass energy             smaller
   than √s of colliding beams: 

ŝ

Aaa p  x p


=

Bbb p  x p


=
pA= pB= 7 TeV s xsxx  ŝ ba ≈=

→  to produce m ≈  100 GeV    x ~ 0.01
       to produce m ≈      5 TeV     x ~ 0.35

if xa ≈ xb 
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Unlike at e+e- colliders

•cross-section : 

∑∫=
ba,

baab
2

bb
2

aaba ) x,(x ˆ )Q ,(x f )Q ,(x f dx dx  σσ

abσ̂ ≡ 
   
   
  

hard scattering cross-section

fi (x, Q2) ≡  parton distribution function

p ≡ uud
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Two main difficulties: pile-up  

Typical of LHCTypical of LHC::
 R = Lσ = 109 interactions / second
 Protons are grouped in bunches (of  ≈ 1011  protons)
 colliding at interaction points every  25 ns 

detector

25 
ns

⇒  At each interaction on average 
      ≈ 25 minimum-bias events are produced. 
      These overlap with interesting  (high pT) 
      physics events, giving rise to so-called 
      pile-up   

~1000 charged particles produced over |η| < 2.5 
at each crossing. However   < pT > ≈ 500 MeV  
(particles from minimum-bias).

→  applying pT cut allows extraction of interesting particles 



50Prof. dr hab. Elżbieta Richter-Wąs

Two main difficulties: pile-up  



51Prof. dr hab. Elżbieta Richter-Wąs

Two main difficulties: pile-up  

Pile-up is one of the most serious experimental difficulty at LHC.

Large impact on detector design:
• LHC detectors must have fast response, otherwise integrate over many bunch crossings 
→ too large pile-up
  Typical response time : 20-50 ns
  →  integrate over 1-2 bunch crossings → pile-up of 
        25-50 minimum bias 
  ⇒  very challenging readout electronics

• LHC detectors must be highly granular to minimise probability that pile-up particles be 
 in the same detector element as interesting object (e.g. γ  from H → γγ decays)
  → large number of electronic channels
  ⇒  high cost

• LHC detectors must be radiation resistant: high flux of particles from pp 
collisions → high radiation environment
      E.g.   in forward calorimeters:             up to 1017 n / cm2

              ( 10 years of  LHC operation)      up to  107 Gy

Note : 1 Gy = 
unit of absorbed energy = 
1 Joule/Kg



52Prof. dr hab. Elżbieta Richter-Wąs

Two main difficulties: QCD background

Common to all hadron colliders:  
high-pT events dominated by QCD jet production

q

q

g

q

q
jet

jet

αs

αs

• Strong production → large cross-section
• Many diagrams contribute: qq → qq, qg → qg, gg → gg, etc. 
• Called “ QCD background “

Most  interesting are rare processesrare processes:
• involve heavy particles
• weak-force mediated production mechanisms (e.g. W production)
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Proton - (anti) proton cross-section

√s

To extract signal over QCD 
jet background must look at 
decays to photons and leptons 
→ pay a prize in branching ratio

Ex. BR (W  → jet jet) ≈ 70%
      BR (W  → lν)      ≈ 30%
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CMS and ATLAS detectors

Don’ t know how New Physics will manifest → detectors must be able to detect as many 
particles and  signatures as possible:
                   e, µ, τ, ν, γ,  jets, b-quarks, ….
                   → “ multi-purpose” experiments. 

• Momentum / charge of tracks and secondary vertices (e.g. from b-quark decays)  
measured in central tracker. Excellent momentum and position resolution required. 
• Energy and position of electrons and photons measured in electromagnetic calorimeters. 
Excellent resolution and particle identification  required. 
• Energy and position of  hadrons and jets measured mainly
  in  hadronic calorimeters. Good coverage  and granularity are required. 
• Muons identified and  momentum measured in external muon spectrometer  (+ central 
tracker). Excellent resolution over  ~ 5 GeV < pT < ~ TeV required.
• Neutrinos  “detected and measured”  through measurement  of missing transverse 
energy ET

miss. Calorimeter coverage over | η |<5 needed.  
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ATLAS and CMS detectors
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ATLAS and CMS detectors

Detection and measurement of neutrinos

• Neutrinos traverse the detector
  without interacting 
  → not detected directly

• Can be detected and  measured 
   asking energy-momentum 
   conservation:

Hadron colliders: energy and momentum of  initial state 
(energy and momentum of interacting  partons) not known.
However:  transverse momentum  of the system = 0 

if a neutrino produced     pT
f ≠  0        

 →  missing transverse  momentum  and    pT
ν  = pT

f = ET
miss
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Examples of performance requirements

mγγ

background from
      pp → γγ

H  → γγ bad resolution

Excellent energy resolution 
of  EM calorimeters for e/γ  and of 
the tracking devices for µ in order 
to extract a signal over the 
backgrounds. 
  Example :   H → γγ
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Examples of performance requirements

Excellent particle identification capability  e.g.   e/jet , γ/jet separation

q
jet

number and pT of hadron in a jet 
have large  fluctuations

q π0
γ
γ

in some cases: one high-pT π0; all other particles
too soft to be detected

e±

γ
π0

Inner detector EM calo HAD calo d (γγ) < 10 mm in calorimeter → 
QCD jets can mimic photons. 
Rare cases, however:

)( γγσ
σ

→H
jj

~ 108

mγγ ~ 100 GeV

need detector (calorimeter) with  fine   granularity  to  separate overlapping  photons from 
single photons 
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Summary

LHC:   
           pp machine (also Pb-Pb)
           √s = 14 TeV
            L = 1033-1034 cm-2 s-1

                   Start-up : 2007

Four large-scale experiments:
      ATLAS, CMS            pp multi-purpose
      LHCb                          pp B-physics
      ALICE                        Pb-Pb
+  dedicated small experiment
    TOTEM

Very broad physics programme thanks to energy and 
luminosity: mass reach : ≤  5 TeV
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Summary

Very difficult environment:
     -- pile-up : ~ 25 soft events produced at each crossing.
                        Overlap with interesting high-pT events. 
     -- large background from QCD processes (jet 
        production): typical of hadron colliders

Very challenging, highly-performing and expensive
  detectors:    
        -- radiation hard
        -- fast 
        -- granular
        -- excellent energy resolution and particle identification
            capability
        -- complicated trigger
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