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Abstract

A brief discussion of uncertainties on efficiencies is given. Four cases are considered:
(1) the simplest counting case, (2) a case where the number of possible events and
number of successful events are determined by fits to distributions, (3) a case where the
number of events is determined by side band subtraction of a distribution, and (4) a
case with side-band subtracted, weighted events.

1 Introduction

Recently, a couple of questions have been submitted to the Statistics Committee concerning
uncertainties on efficiencies. Both questions were of the same nature, namely, how do you deal
with the correlation between the number of events that pass a cut with the total number
before the cut. The Statistics Committee has developed formulae to cover the cases in
question. These are of sufficient generality to warrant a note. In addition, the method is
presented so that people can develop their own formula if their case is different.

One important point is that testing is essential, in all the but the simplest cases. All
of the formulae in this note were tested on large samples of simple Monte Carlo data and
found to correctly predict the spread in measured efficiencies. It is not possible to test all
possible values of parameters, but for some reasonable choices, the formulae here work very
well. The reader is urged to test these formulae in their particular case before using them.

Section 2 covers a very simple counting case with the well-known binomial result.
An alternative derivation is presented that forms the basis for later derivations. Section 3
discusses the case where the number of events before and after the cut are determined by
fits to a distribution. Section 4 covers the case where a side band subtraction is done, and
Section 5 extends the side band method to weighted histograms.



2 Simple Counting

The simplest case is just counting the number Ny of candidate events and the number N,
that pass a cut. The efficiency is then given by

€= &. (1)
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Since N, and Ny are correlated, using equation 1 with propagation of uncorrelated Poisson
errors does not give the correct uncertainty on the efficiency. Usually, this is handled by
noting that this is equivalent to a binomial problem with total events Ny and a probability
e for each event to pass. The uncertainty on € is then given by
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An equivalent, alternative method is to consider the number IV, of events that pass
and the number N that fail (see pages 46-48 of Statistics for Nuclear and Particle
Physicists by Louis Lyons, Cambridge University Press, 1986). These two are uncorrelated
and hence easier to use in error propagation. Note that in this approach, the total number of
events Nog = N, + Ny is not a fixed number, but is itself Poisson distributed. The efficiency
is
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Standard error propagation then gives
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Note that this is exactly the same result as obtained by considering it as a binomial problem,
as it should be since they are equivalnet. The reason for considering the second method is
that it is easier to extend to the cases considered below.

Also note that in practice you don’t know the true ¢ and use the measured value
from equation 1 or 3. If € is close to 0 or 1, this is usually not a good approximation, since
(A€)? varies relatively rapidly with € in this case. Handling this effect is not the subject of
this note (see CDF note 5894 by John Conway for a Bayesian treatment of this subject).



3 Efficiency From Fits

Often there is background to the events of interest, and fits are done to determine the
numbers. For example, we might be interested in the number of .J/1’s before and after some
cut. We fit to the mass distribution of the pu*p~ including a background term to determine
the number of signal events. The number before the cut Ny is correlated with the number
N, after the cut, so simple error propagation in these variables is not feasible.

Instead, suppose that the fit number that pass the cut is N, £ AN, and the fit
number that fail the cut is Ny & ANy. The efficiency is
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Standard error propagation gives
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where we assume Ny = N, + Ny (which is not exactly true in each case since each of these
numbers comes from a fit, but is a hopefully good approximation).

If we also assume that (ANp)? = (AN,)? + (ANy)?, then we can rewrite (Ae)?
completely in terms of results of fits to the total number before the cut and the number that
pass the cut, that is,
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Note that if we replace (AN,)? and (ANy)? by their Poisson values of N, and Ny, respec-
tively, we get back the usual binomial formula.

It is important to note that in the equations above, uncertainties on numbers are
the variations we would expect if we repeated the measurements and got variations in both
the signal fraction and the total number of events. Often, a distribution containing signal
and background contributions is fit with a parameter f giving the fraction of signal. If the
uncertainty from the fit on f is Af and the total number of events being fit is Ny, then the



number of signal events Vg and its uncertainty are given by
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This uncertainty can also be obtained by doing an extended likelihood fit, where a Poisson
term for Ny, is included in the likelihood function (see pages 98-100 of Statistics for
Nuclear and Particle Physicists by Louis Lyons, Cambridge University Press, 1986).

4 Efficiency From Side Band Subtraction

Another technique for determining an efficiency from a distribution with background is side
band subtraction. For example, we may have a sample of J/1’s and determine the numbers
before and after a cut by a side band subtraction in the mass distributions.

We define a signal region and a side band region. Let N, and Ny, be the numbers of
events in the signal region that pass and fail the cut, respectively. Let N, ¢p and Ny gp be the
corresponding numbers in the side bands. Define Ny = N,+ N and Ny sp = Np sp+ Ny sB.
We want to include the fact that the side bands may not have the same number of expected
background events as the signal region by defining the ratio of expected events to be «, that
is, if there are Ngp side band events, we expect aNgp events in the signal region. In this
derivation, it is assumed that « is the same before and after the cut. If this is not the case,
the reader is left to extend the derivation.

The efficiency is
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Standard propagation of errors gives
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where the first line again involves no cross terms because the regions are indepedent and the
last step uses the fact that we are counting the number of events in each region, and hence
the uncertainties on these number is given by the standard Poisson values. Note that the
last form depends only on the numbers that pass and the total numbers (not on the number
that fail).

5 Efficiency From Weighted Side Band Subtraction

Consider the case where we wish to do a side band subtraction on a weighted histogram. The
question that was put to the Statistics Committee concerned weighting only the distribution
of events that pass the cut. Specifically, it was a case where the efficiency had a Pr depen-
dence that had been measured and it was desired to look for dependence on other variables
by weighting by 1/e(Pr). The “weighted efficiency” is the ratio of the side band subtracted
events in the weighted distribution of events that pass to the side band subtracted number
of events in the unweighted total.

Define N,, N¢, N, sp, Nysp, No, Nosp, and « as in section 4. Let w(x) be the
weight that depends on some external variable (for example, x = Pp in the example above).
The weighted sums are
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where is the sum is over the events in the appropriate region. The “weighted efficiency” is
defined as
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When we propagate the errors, we need the uncertainty on W,. This has two con-
tributions - one from variation in the sampling of x and one from variation in the number
of events. First, consider the variation due to sampling of z, that is, we could repeat the
experiment and get the same number N, of events, but get a different W, because the set
of weights is different. In this case,
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The second contribution is from variation in the number of events that pass the cut. We can

approximate this as
Np+AN,
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This latter term is clearly correlated with AN,,.

There are similar contributions to the uncertainty on W, sg. We allow for the pos-
sibility that the averages on w are different for the background and the signal, giving
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where the first term is uncorrelated with AN, g and the second term is fully correlated.

Propagating the errors on equation 25, including the correlations gives
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where Poisson uncertainties have been used in the last step. Note that these formulae
only consider variations in w due to its dependence on the external variable x. If there
is additional significant uncertainty, for example, a statistical uncertainty on the measured
weight function, it would also need to be included.

The unweighted case in section 4 is a special case of the weighted case, as can be
seen by setting the average weights to 1 and the Aw’s to 0 in equation 36, which yields
equation 22.
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